
Computing Year 3 2015—2016

Unit 3.2 Step 1: Karin Clark
Learning Expectations Main Session Resources and e-safety

This unit will enable the children to:

 develop a number of strategies for finding
errors in programs

 build up resilience and strategies for
problem solving

 increase their knowledge and understanding
of Scratch

 recognise a number of common types of
bug in software..

Share the Learning expectations and explain the success criteria.

Revise the term ‘algorithm’: an unambiguous procedure or
precise step-by-step guide to solve a problem or achieve a
particular objective.

Ask the pupils to recite their three-times table. What did they
say? Could they phrase the instruction more clearly? Ask
them to write an algorithm for reciting the three-times table,
e.g. ‘Starting from 1 × 3, multiply each counting number by
three, up to and including 12 × 3.’

Show the children the Scratch multiplication script on the
CD-ROM. It is meant to read the twelve-times table up to
12 × 3. What’s wrong with it? (It stops at 11 × 3, because

it repeats until 12 × 3, but not including 12 × 3.) Explain

that ‘off-by-one’ errors like this are common mistakes in
programming.

Ask the pupils to compare the Scratch script to their

algorithm. Can they find the script block that needs changing

so that the cat says the three-times table all the way through?
Ask the pupils to fix the program by editing the script and
testing the changes they make.

If time allows, you could ask the pupils to record a
screencast explaining how they debugged the program.

Pupils don’t need accounts to download Scratch
1.4 or to use Scratch 2.0 or Snap! online.
Children register with a class account
Once registered, pupils can share their corrected
and refined programs with the global Scratch
community in a safe online space. Alternatively,
pupils can upload their completed projects to the
school’s learning platform or blog.
If pupils upload screencasts of their solutions,
make sure you take the usual precautions to
protect their identity.

If pupils use the web for research (see Extensions),
ensure all usual internet safety protocols are in

place Scratch file—example animation

Use Scratch multiplication script

Use Scratch multiplication script: http://
scratch.mit.edu/projects/11932181

Mrs Clark - 3 times table

https://scratch.mit.edu/projects/83161952/

Curriculum Links for Unit 3.1—steps 1-6

Literacy 

Numeracy 

Science 

D&T

Computing Year 3 2015—2016

Unit 3.2 Step 2: Karin Clark
Learning Expectations Main Session Resources and e-safety

This unit will enable the children to:

 develop a number of strategies for finding
errors in programs

 build up resilience and strategies for
problem solving

 increase their knowledge and understanding
of Scratch

 recognise a number of common types of
bug in software..

Ask the pupils to draw a circle on a piece of paper. Discuss
the differences between how different children drew these.
Did some draw much more slowly than others? Did any use
compasses or objects to draw round? Were the faster pupils
less accurate than the slower ones?
Remind the pupils what an algorithm is (unambiguous, step by-
step instructions). Invite them to write an algorithm for
drawing a circle, in terms of the steps or rules they followed.
Compare the algorithms that they have written.
Head out into the playground or gym, if you can, and practise
the following possible approach to drawing a circle.
Repeat until you get back to the start:
• Walk forward one step.
• Turn right a bit.
Ask the pupils to look at the Scratch project at http://scratch.
mit.edu/projects/11932410 and try to explain how it works.
Run the script. What do the pupils think? The program is
meant to draw a circle, or at least a close approximation to
one. Did it work? Did it work well? Try to elicit a response of:
‘The program takes too long to draw the circle.’
Ask the pupils to look for ways to improve the performance
of the program while keeping the size of the ‘circle’ the same.
Ask the pupils to experiment with changing the numbers.
(It is not necessary to explain what the angle values mean as
pupils can discover for themselves how changing this affects
the shape drawn.) At what point does it become obvious that
their shape is no longer a circle?
The pupils could record a screencast or audio file explaining
how the program works and what they did to improve its
performance.

Mrs Clark—Draw a circle

https://scratch.mit.edu/projects/83160628/

Pupils don’t need accounts to download Scratch
1.4 or to use Scratch 2.0 or Snap! online.
Children register with a class account
Once registered, pupils can share their corrected
and refined programs with the global Scratch
community in a safe online space. Alternatively,
pupils can upload their completed projects to the
school’s learning platform or blog.
If pupils upload screencasts of their solutions,
make sure you take the usual precautions to
protect their identity.

If pupils use the web for research (see Extensions),
ensure all usual internet safety protocols are in

place Scratch file—example animation

Use Scratch circle script

Use Scratch circle script: http://scratch.
mit.edu/projects/11932410

Mrs Clark—Draw a circle

https://scratch.mit.edu/projects/83160628/

Curriculum Links for Unit 3.1—steps 1-6

Literacy 

Numeracy 

Science 

D&T

Computing Year 3 2015—2016

Unit 3.2 Step 3: Karin Clark
Learning Expectations Main Session Resources and e-safety

This unit will enable the children to:

 develop a number of strategies for finding
errors in programs

 build up resilience and strategies for
problem solving

 increase their knowledge and understanding
of Scratch

 recognise a number of common types of
bug in software..

.

Ask the pupils to think about occasions when everybody
in the class is doing something at the same time, such as
collecting things from their trays or tidying up. What sort of
problems do they encounter? How can these be avoided?
Could the pupils write an algorithm for tidying up the
classroom at the end of the day? Would this algorithm work if
all pupils followed it at the same time?

Explain that in modern computers, several things can be
happening at once, and that sometimes this can cause
difficulties – when one process races ahead without another
catching up, or when several processes are all waiting for the
same shared resource.

Show the pupils the Scratch project listed in Resources,
which is meant to be two penguins telling a joke. Ask the
pupils to identify the problem with this project and try to fix
it. It may be helpful to introduce pupils to (or remind them

of) the say () for () secs and wait () secs blocks, and/or the

broadcast () and when I receive () blocks. (See Step 5 of Unit

3.1 – We are programmers.)

The pupils could record a screencast explaining how the
program works and what they did to fix it.
The pupils could adapt their corrected script for other jokes
or characters

Mrs Clark Knock, knock

https://scratch.mit.edu/projects/83164482/

Pupils don’t need accounts to download Scratch
1.4 or to use Scratch 2.0 or Snap! online.
Children register with a class account
Once registered, pupils can share their corrected
and refined programs with the global Scratch
community in a safe online space. Alternatively,
pupils can upload their completed projects to the
school’s learning platform or blog.
If pupils upload screencasts of their solutions,
make sure you take the usual precautions to
protect their identity.

If pupils use the web for research (see Extensions),
ensure all usual internet safety protocols are in

place Scratch file—example animation

Use Scratch penguin script

UseScratch penguin script: http://
scratch.mit.edu/projects/11932160

Mrs Clark Knock, knock

https://scratch.mit.edu/projects/83164482/

Curriculum Links for Unit 3.1—steps 1-6

Literacy 

Numeracy 

Science 

D&T

Computing Year 3 2015—2016

Unit 3.2 Step 4: Karin Clark
Learning Expectations Main Session Resources and e-safety

This unit will enable the children to:

 develop a number of strategies for finding
errors in programs

 build up resilience and strategies for
problem solving

 increase their knowledge and understanding
of Scratch

 recognise a number of common types of
bug in software..

Ask the pupils to describe what happens if they roll a ball
towards a wall, either straight on or at an angle. Can they
draw a picture to show how the ball would bounce? Do the
experiment, changing the angle of impact. Are the pupils
surprised? Can they come up with a rule to describe what
happens?
Explain that often, programs have bugs because the
programmer hasn’t fully understood the idea of what’s
supposed to happen in the program – the bug lies in the
concept for the program rather than the code. These sorts of
logic bugs can be tricky to find and fix.
Let the pupils play the simple ‘pong’-style game listed in

Resources. Do the pupils notice anything odd about the

game? They should spot that the ball doesn’t bounce back
correctly when it hits the bat (it always bounces off in the
direction it came).
Ask the pupils to study the script to work out how the
game works, and then identify which block has the bug (if
necessary, remind them they need to have the ball sprite
selected to see the appropriate script). Ask them to correct
the bug, drawing on their knowledge of how a ball bounces
from discussions at the start of the session. The correct

solution is to use point in direction (180 – direction). Use your

judgement about how much scaffolding to provide.
You might want pupils to record a screencast explaining how
the program works and what they did to fix it.
You could ask the pupils to make further changes to the
game, perhaps allowing a number of lives, and keeping score.

Mrs Clark—Pong

https://scratch.mit.edu/projects/83166924/

Pupils don’t need accounts to download Scratch
1.4 or to use Scratch 2.0 or Snap! online.
Children register with a class account
Once registered, pupils can share their corrected
and refined programs with the global Scratch
community in a safe online space. Alternatively,
pupils can upload their completed projects to the
school’s learning platform or blog.
If pupils upload screencasts of their solutions,
make sure you take the usual precautions to
protect their identity.

If pupils use the web for research (see Extensions),
ensure all usual internet safety protocols are in

place Scratch file—example animation

Use Scratch ‘Pong’ script

Use Scratch ‘Pong’ script: http://scratch.
mit.edu/projects/11932263

Mrs Clark—Pong

https://scratch.mit.edu/projects/83166924/

Curriculum Links for Unit 3.1—steps 1-6

Literacy 

Numeracy 

Science 

D&T

Computing Year 3 2015—2016

Unit 3.2 Step 5: Karin Clark
Learning Expectations Main Session Resources and e-safety

This unit will enable the children to:

 develop a number of strategies for finding
errors in programs

 build up resilience and strategies for
problem solving

 increase their knowledge and understanding
of Scratch

 recognise a number of common types of
bug in software..

Ask the pupils to practise their division in pairs. One pupil
could give a number, the other the number to divide by, and
both could work out the answer. Ask the pupils to consider
how they worked out the answers to the division questions.
Can they write their method as an algorithm? For example,
‘Start with the number to be divided (the dividend). Count how
many times you can subtract the divisor until you get to zero.’
Another example might be ‘Look up the answer on the times
table and the number you multiply by tells you the quotient.’
Are there any divisions their algorithm won’t work for? A test
plan (a list of divisions to try) would be useful to see if there
were any special cases when their algorithm didn’t work.
Check if the pupils’ algorithms work for dividing where there
is a remainder, e.g. 7 ÷ 3. What about when the children try to
divide by zero?

Show the pupils the project listed in Resources and ask

them to explain to each other how this program works. Ask
them to test the program. Does Scratch always give the right
answer when the divisor ‘goes in’ exactly? What about when it
doesn’t?
Ask the pupils to edit this project so that Scratch will work out
remainders.
Ask the pupils to edit the script to use Scratch’s built-in

division block, and to test the program again. Were they

surprised by what happened?
The pupils could record a screencast explaining what the
script does and how they have used logical reasoning to
improve it.

Mrs Clark—Division

https://scratch.mit.edu/projects/83183382/

Pupils don’t need accounts to download Scratch
1.4 or to use Scratch 2.0 or Snap! online.
Children register with a class account
Once registered, pupils can share their corrected
and refined programs with the global Scratch
community in a safe online space. Alternatively,
pupils can upload their completed projects to the
school’s learning platform or blog.
If pupils upload screencasts of their solutions,
make sure you take the usual precautions to
protect their identity.

If pupils use the web for research (see Extensions),
ensure all usual internet safety protocols are in

place Scratch file—example animation

Use Scratch division script

Use Scratch division script: http://scratch.
mit.edu/projects/13550313

Mrs Clark—Division

https://scratch.mit.edu/projects/83183382/

Curriculum Links for Unit 3.1—steps 1-6

Literacy 

Numeracy 

Science 

D&T

Computing Year 3 2015—2016

Unit 3.2 Step 6: Karin Clark

Learning Expectations Main Session Resources and e-safety

This unit will enable the children to:

 develop a number of strategies for finding
errors in programs

 build up resilience and strategies for
problem solving

 increase their knowledge and understanding
of Scratch

 recognise a number of common types of
bug in software..

Show the pupils the video clip about creating a driving
simulator. The clip ends with the pupils discovering what
appears to be a bug in their scripts. The pupils might also
enjoy watching the second clip, about simulating Formula 1.

Show the pupils the Scratch project referenced in Resources,
which uses the same code as the scripts in the video.
Ask the pupils to study the script and explain how it works.

What happens when the speed is increased? At what speed
does the car go off the track? Does it matter where the car
starts or which direction it’s facing? Does the track shape
make a difference?
Can the pupils explain why this script seems to work for low
speeds but breaks for high speeds? Can they think of a way
to fix this? What could they change? Be aware that this is
quite hard, owing to limitations in Scratch, but the pupils will
still benefit from exploring this, and thinking of ways to work
around these limitations.
The pupils could record a screencast explaining how the
program works and what they’ve done to improve it.
Show the pupils the clip about Google’s self-driving cars.
The pupils should discuss what an algorithm for driving
would be like. This is an example of where it’s better to think
of algorithms as sets of rules, e.g. if the road ahead is clear,
then accelerate up to a safe speed; if the speed is greater
than the speed limit, then stop accelerating or brake until
the speed is below the speed limit, etc. It might be easier
to do this in terms of the rules that drivers should follow.
What events do they encounter? How should they react
to them? The pupils should think about how important it
would be to debug the program driving the car, and what the
consequences of bugs in this software might be.
Finally, pupils should evaluate the success of their work

Pupils don’t need accounts to download Scratch
1.4 or to use Scratch 2.0 or Snap! online.
Children register with a class account
Once registered, pupils can share their corrected
and refined programs with the global Scratch
community in a safe online space. Alternatively,
pupils can upload their completed projects to the
school’s learning platform or blog.
If pupils upload screencasts of their solutions,
make sure you take the usual precautions to
protect their identity.

If pupils use the web for research (see Extensions),
ensure all usual internet safety protocols are in

place Scratch file—example animation

Scratch racing car script
Pupil self-assessment information
Scratch racing car script: http://
scratch.mit.edu/projects/11932304

Mrs Clark—Race Track

https://scratch.mit.edu/projects/85016430/

Curriculum Links for Unit 3.1—steps 1-6

Literacy 

Numeracy 

Science 

D&T

