
22

1	 About this unit
Software: 	 Scratch 2.0, Screencast-o-matic (if appropriate)
Apps: 	 Snap! in the web browser (Scratch requires Adobe®
	 Flash® Player, which is not available on iPad)
Hardware: 	 Laptop/desktop computers, microphone
	 (if appropriate)
Outcome: 	 Debugged Scratch scripts and explanatory
	 screencasts (if appropriate)

UNIT SUMMARY

In this unit, the children work with six example
Scratch projects. They explain how the scripts work,
finding and correcting errors in them, and explore
creative ways of improving them. The children learn to
recognise some common types of programming error,
and practise solving problems through logical thinking.

CURRICULUM LINKS

Computing PoS
	 Debug programs that accomplish specific goals.
	 Use sequence, selection, and repetition in

programs; work with variables and various forms of
input and output.

	 Use logical reasoning to explain how some simple
algorithms work and to detect and correct errors in
algorithms and programs.

Suggested subject links
	 English: Programming emphasises a precise

use of language and, in traditional, text-based
programming languages, the importance of correct
spelling and punctuation.

	 Maths: This unit develops skills in logical reasoning
and problem solving that can be applied right
across the programme of study.

	 Science: The work in this unit links to the
requirements for working scientifically; in particular,
making systematic and careful observations, and
using results to draw simple conclusions and
suggest improvements.

TRANSLATING THE COMPUTING PoS

	 Much of the work, and fun, in programming lies
in spotting and correcting mistakes, known as
‘bugs’. The process of finding and fixing bugs is
called ‘debugging’. In this unit, the children will
debug programs that accomplish specific goals.

	 The more complex a program is, the more likely
bugs are to occur. Debugging and developing
others’ projects is a great way for pupils to use
logical reasoning to explain how simple algorithms
work and to detect and correct errors in algorithms
and programs.

	 The example scripts provided for this unit make
use of sequence, selection and repetition,
variables and forms of input and output.

	 For more information about the different types of
bugs, see the unit poster.

LEARNING EXPECTATIONS

This unit will enable the children to:
	 develop a number of strategies for finding errors in

programs
	 build up resilience and strategies for problem solving
	 increase their knowledge and understanding of

Scratch
	 recognise a number of common types of bug in

software.

The assessment guidance on page 30 will help
you to decide whether the children have met these
expectations.

VARIATIONS TO TRY

	 Pupils could develop their debugging skills by
fixing the code they and their classmates develop.
You may be able to cover the ideas in this unit by
linking it with Unit 3.1 – We are programmers.

	 You don’t have to use the example scripts
provided on the CD-ROM – you could use your
own scripts, or your pupils’ scripts, instead.

	 Pupils could debug and/or develop programs
downloaded from the Scratch website, which are
all covered by a Creative Commons BY-SA licence,
i.e. they can be reused as long as the original
author is credited and the resulting projects are
shared on the same basis.

Unit
3.2

We are bug fixers
Finding and correcting bugs in programs

23

INCLUSION

	 Scratch has several languages built in (use the
globe icon at the top of the screen).

	 This unit uses maths skills. You may want to give
extra support to pupils who struggle with maths.

	 Some pupils may benefit from working with a
partner, particularly for the last couple of steps.

	 USEFUL LINKS

Software and tools
	 Scratch is free open source software. Download

Scratch 1.4 from http://scratch.mit.edu/scratch_1.4
or use Scratch 2.0 online at http://scratch.mit.edu/
projects/editor.

	 Snap! is free open source software. Use online at
http://snap.berkeley.edu/snapsource/snap.html.

	 Screencast-o-matic is a free online screen recorder
using Java: www.screencast-o-matic.com/screen_
recorder.

Online tutorials
	 Introduction to Scratch 2.0: http://scratch.mit.edu/

help/videos.
	 Suggested solutions for each Scratch bug:

http://youtu.be/grMMY2LSKFI.

Information and ideas
	 Miles Berry’s Scratch project directory: http://

scratch.mit.edu/studios/306100.
	 There are many further debugging challenges on

the Scratch site. See http://scratch.mit.edu/search/
google_results/?q=debugging and http://scratch.
mit.edu/studios/219583.

THINGS TO DO
	 Read the Core steps sections of Running the task.
	 Decide which software/tools are most accessible/

appropriate for use with your class. Scratch is
recommended and the example scripts provided
are all built using Scratch 2.0.

	 Download your chosen software/tools (see Useful
links), or ensure pupils have access to the Scratch
website. They do not need to register for accounts.

	 Watch the Software in 60 seconds walkthroughs.
The walkthroughs are not directly related to bug
fixing but provide a useful reference point.

	 Work through the example scripts provided on the
CD-ROM (or online) and have a go at debugging
them.

	 Think about the individuals and groups you have
in your class. Could you use any of the Extensions
on pages 24–29 to extend your more able children?

WWW

Could you use any of the suggestions in Inclusion
(see below) to support children with specific
needs, e.g. SEN or EAL? Have you considered
how a Teaching Assistant will support you and the
children, if one is available?

	 Ensure you have sufficient computers/laptops/
tablets and other equipment booked in advance.

	 Decide whether you need evidence of pupils’
debugging – are corrected scripts sufficient, or do
you want pupils to record screencasts? It is useful
for pupils to be able to record an explanation of
how they improved the scripts, but the time taken
will detract from their programming.

THINGS YOU NEED
	 Computers/laptops/tablets loaded with the

software you have chosen
	 Internet access
	 Screen recorder software and microphones, if

appropriate.

CD-ROM RESOURCES

	 Software in 60 seconds – Scratch (1–5)
	 Software in 60 seconds – Introduction to Snap!
	 Six Scratch scripts (with bugs) for children to

work on
	 Unit poster – Different types of bugs
	 Pupil self-assessment information

E-SAFETY

	 Pupils don’t need accounts to download Scratch
1.4 or to use Scratch 2.0 or Snap! online.

	 If pupils do register for accounts, they need to give
a parent’s or carer’s email address, so you should
check with parents or carers that they’re happy for
their children to do this.

	 Once registered, pupils can share their corrected
and refined programs with the global Scratch
community in a safe online space. Alternatively,
pupils can upload their completed projects to the
school’s learning platform or blog.

	 If pupils upload screencasts of their solutions,
make sure you take the usual precautions to
protect their identity.

	 If pupils use the web for research (see Extensions),
ensure all usual internet safety protocols are in
place.

 2 Getting ready

http://scratch.mit.edu/scratch_1.4
http://scratch.mit.edu/projects/editor
http://scratch.mit.edu/projects/editor
http://snap.berkeley.edu/snapsource/snap.html
http://www.screencast-o-matic.com/screen_recorder
http://www.screencast-o-matic.com/screen_recorder
http://scratch.mit.edu/help/videos
http://scratch.mit.edu/help/videos
http://youtu.be/grMMY2LSKFI
http://scratch.mit.edu/studios/306100
http://scratch.mit.edu/studios/306100
http://scratch.mit.edu/search/google_results/?q=debugging
http://scratch.mit.edu/search/google_results/?q=debugging
http://scratch.mit.edu/studios/219583
http://scratch.mit.edu/studios/219583

24

SCHOOL

 	Once pupils have got the script working
properly, they could look at ways to
improve the program, such as allowing
users to choose the times table, or
improving the graphics.

 	Some pupils could have a go at rewriting
the script without using Scratch’s () × ()

	 block, e.g. using repeated addition for
working out the product – perhaps using
a running total variable and adding three
each time round the loop.

HOME

	 Syntax errors are bugs in which the
spelling, punctuation or ‘grammar’ of
a program isn’t quite right. It’s hard to
make this sort of mistake with Scratch,
but the project at http://scratch.mit.edu/
projects/11932059 has similar problems.
It’s meant to draw a set of ten squares,
one inside the other: can the pupils fix it?

 	Share the Learning expectations (see page 22) and explain
the success criteria.

 	Revise the term ‘algorithm’: an unambiguous procedure or
precise step-by-step guide to solve a problem or achieve a
particular objective.

 	Ask the pupils to recite their three-times table. What did they
say? Could they phrase the instruction more clearly? Ask
them to write an algorithm for reciting the three-times table,
e.g. ‘Starting from 1 × 3, multiply each counting number by
three, up to and including 12 × 3.’

 	Show the children the Scratch multiplication script on the
CD-ROM. It is meant to read the twelve-times table up to
12 × 3. What’s wrong with it? (It stops at 11 × 3, because
it repeats until 12 × 3, but not including 12 × 3.) Explain
that ‘off-by-one’ errors like this are common mistakes in
programming.

 	Ask the pupils to compare the Scratch script to their
algorithm. Can they find the script block that needs changing
so that the cat says the three-times table all the way through?

 	Ask the pupils to fix the program by editing the script and
testing the changes they make.

 	If time allows, you could ask the pupils to record a
screencast explaining how they debugged the program.

Core steps Extensions
Step 1: Spotting and correcting off-by-one bugs

Software: Scratch 2.0, Screencast-o-matic (if appropriate) Apps: Snap! in the web browser (Scratch requires Adobe® Flash® Player, which is not available on iPad)
Hardware: Laptop/desktop computers, microphone (if appropriate) Outcome: Debugged Scratch scripts and explanatory audio files or screencasts (if appropriate)

 3 Running the task – We are bug fixers

	 Scratch multiplication script

	 Scratch multiplication script: http://
scratch.mit.edu/projects/11932181

RESOURCES

POSSIBLE OUTCOME FOR THIS STEP:

WWW

http://scratch.mit.edu/projects/11932059
http://scratch.mit.edu/projects/11932059
http://scratch.mit.edu/projects/11932181
http://scratch.mit.edu/projects/11932181

25

WWW

SCHOOL

	 Ask the pupils to make further changes
to the program to create more interesting
shapes or patterns, or to explore other
blocks in Scratch’s Blocks palette.

	 Set the pupils the challenge of
changing this script so that it draws a
circle centred on the cat’s initial position,
with the cat returning back to the start
at the end.

 	Ask the pupils to draw a circle on a piece of paper. Discuss
the differences between how different children drew these.
Did some draw much more slowly than others? Did any use
compasses or objects to draw round? Were the faster pupils
less accurate than the slower ones?

 	Remind the pupils what an algorithm is (unambiguous, step-
by-step instructions). Invite them to write an algorithm for
drawing a circle, in terms of the steps or rules they followed.
Compare the algorithms that they have written.

 	Head out into the playground or gym, if you can, and practise
the following possible approach to drawing a circle.

	 Repeat until you get back to the start:
		 •	 Walk forward one step.
		 •	 Turn right a bit.

 	Ask the pupils to look at the Scratch project at http://scratch.
mit.edu/projects/11932410 and try to explain how it works.

 	Run the script. What do the pupils think? The program is
meant to draw a circle, or at least a close approximation to
one. Did it work? Did it work well? Try to elicit a response of:
‘The program takes too long to draw the circle.’

 	Ask the pupils to look for ways to improve the performance
of the program while keeping the size of the ‘circle’ the same.
Ask the pupils to experiment with changing the numbers.
(It is not necessary to explain what the angle values mean as
pupils can discover for themselves how changing this affects
the shape drawn.) At what point does it become obvious that
their shape is no longer a circle?

 	The pupils could record a screencast or audio file explaining
how the program works and what they did to improve its
performance.

Step 2: Spotting and correcting performance bugs

HOME

	 The pupils could research the origins of
the term ‘bug’ for mistakes in software.

	 The pupils could explain the term
‘algorithm’ to their parents or carers, and
show them their algorithm for drawing a
circle on paper.

	 Scratch circle script

	 Scratch circle script: http://scratch.
mit.edu/projects/11932410

RESOURCES

POSSIBLE OUTCOME FOR THIS STEP:

http://scratch.mit.edu/projects/11932410
http://scratch.mit.edu/projects/11932410
http://scratch.mit.edu/projects/11932410
http://scratch.mit.edu/projects/11932410

26

 	Ask the pupils to think about occasions when everybody
in the class is doing something at the same time, such as
collecting things from their trays or tidying up. What sort of
problems do they encounter? How can these be avoided?
Could the pupils write an algorithm for tidying up the
classroom at the end of the day? Would this algorithm work if
all pupils followed it at the same time?

 	Explain that in modern computers, several things can be
happening at once, and that sometimes this can cause
difficulties – when one process races ahead without another
catching up, or when several processes are all waiting for the
same shared resource.

 	Show the pupils the Scratch project listed in Resources,
which is meant to be two penguins telling a joke. Ask the
pupils to identify the problem with this project and try to fix
it. It may be helpful to introduce pupils to (or remind them
of) the say () for () secs and wait () secs blocks, and/or the
broadcast () and when I receive () blocks. (See Step 5 of Unit
3.1 – We are programmers.)

 	The pupils could record a screencast explaining how the
program works and what they did to fix it.

 	The pupils could adapt their corrected script for other jokes
or characters.

Step 3: Spotting and correcting multi-thread bugs

	 Scratch penguin script

	 Scratch penguin script: http://
scratch.mit.edu/projects/11932160

RESOURCES

SCHOOL

 	The penguin sprites could be animated
while talking – each has a second
costume to allow this.

HOME

 	Pupils could try more debugging
exercises in Scratch that explore working
with multiple sprites, e.g. http://scratch.
mit.edu/projects/10437040/, http://
scratch.mit.edu/projects/10745531/
and http://scratch.mit.edu/
projects/10745563/.

POSSIBLE OUTCOME FOR THIS STEP:

Core steps Extensions

WWW

http://scratch.mit.edu/projects/11932160
http://scratch.mit.edu/projects/11932160
http://scratch.mit.edu/projects/10437040/
http://scratch.mit.edu/projects/10437040/
http://scratch.mit.edu/projects/10745531/
http://scratch.mit.edu/projects/10745531/
http://scratch.mit.edu/projects/10745563/
http://scratch.mit.edu/projects/10745563/

27

SCHOOL

	 The pupils could convert this into a
two-player game, using two bats, each
controlled by different keys, e.g. cursor
arrows and the W and S keys, with ‘out
of bounds’ on either side of the board,
and perhaps a score for how many faults
each player makes.

HOME

	 The pupils could draw up a list of bugs
or ideas for improvements they’ve
spotted in programs they’ve used,
including on the web or on smartphones.

 	Ask the pupils to describe what happens if they roll a ball
towards a wall, either straight on or at an angle. Can they
draw a picture to show how the ball would bounce? Do the
experiment, changing the angle of impact. Are the pupils
surprised? Can they come up with a rule to describe what
happens?

 	Explain that often, programs have bugs because the
programmer hasn’t fully understood the idea of what’s
supposed to happen in the program – the bug lies in the
concept for the program rather than the code. These sorts of
logic bugs can be tricky to find and fix.

 	Let the pupils play the simple ‘pong’-style game listed in
Resources. Do the pupils notice anything odd about the
game? They should spot that the ball doesn’t bounce back
correctly when it hits the bat (it always bounces off in the
direction it came).

 	Ask the pupils to study the script to work out how the
game works, and then identify which block has the bug (if
necessary, remind them they need to have the ball sprite
selected to see the appropriate script). Ask them to correct
the bug, drawing on their knowledge of how a ball bounces
from discussions at the start of the session. The correct
solution is to use point in direction (180 – direction). Use your
judgement about how much scaffolding to provide.

 	You might want pupils to record a screencast explaining how
the program works and what they did to fix it.

 	You could ask the pupils to make further changes to the
game, perhaps allowing a number of lives, and keeping score.

Step 4: Spotting and correcting conceptual bugs

	 Scratch ‘Pong’ script

	 Scratch ‘Pong’ script: http://scratch.
mit.edu/projects/11932263

RESOURCES

POSSIBLE OUTCOME FOR THIS STEP:

WWW

http://scratch.mit.edu/projects/11932263
http://scratch.mit.edu/projects/11932263

28

SCHOOL

 	�The pupils could make further changes
to the algorithm so that when the number
doesn’t divide exactly, the answer is
displayed as a fraction or a decimal
rather than as a whole number with a
remainder.

 The pupils could improve the project in
other ways too, perhaps making this the
basis of a calculator project.

 Ask the pupils to practise their division in pairs. One pupil
could give a number, the other the number to divide by, and
both could work out the answer. Ask the pupils to consider
how they worked out the answers to the division questions.
Can they write their method as an algorithm? For example,
‘Start with the number to be divided (the dividend). Count how
many times you can subtract the divisor until you get to zero.’
Another example might be ‘Look up the answer on the times
table and the number you multiply by tells you the quotient.’

 Are there any divisions their algorithm won’t work for? A test
plan (a list of divisions to try) would be useful to see if there
were any special cases when their algorithm didn’t work.
Check if the pupils’ algorithms work for dividing where there
is a remainder, e.g. 7 ÷ 3. What about when the children try to
divide by zero?

 Show the pupils the project listed in Resources and ask
them to explain to each other how this program works. Ask
them to test the program. Does Scratch always give the right
answer when the divisor ‘goes in’ exactly? What about when it
doesn’t?

 Ask the pupils to edit this project so that Scratch will work out
remainders.

 Ask the pupils to edit the script to use Scratch’s built-in
division block, and to test the program again. Were they
surprised by what happened?

 The pupils could record a screencast explaining what the
script does and how they have used logical reasoning to
improve it.

Step 5: Spotting and correcting arithmetical bugs

HOME

 	�A similar bug is present in the division
game project at http://scratch.mit.edu/
projects/11932022. Does this game
work the way it should? Ask the pupils to
debug this script.

	 Scratch division script

	 Scratch division script: http://scratch.
mit.edu/projects/13550313

RESOURCES

POSSIBLE OUTCOME FOR THIS STEP:

Core steps Extensions

WWW

http://scratch.mit.edu/projects/11932022
http://scratch.mit.edu/projects/11932022
http://scratch.mit.edu/projects/13550313
http://scratch.mit.edu/projects/13550313

29

 	Show the pupils the video clip about creating a driving
simulator. The clip ends with the pupils discovering what
appears to be a bug in their scripts. The pupils might also
enjoy watching the second clip, about simulating Formula 1.

 	Show the pupils the Scratch project referenced in Resources,
which uses the same code as the scripts in the video.

 	Ask the pupils to study the script and explain how it works.
What happens when the speed is increased? At what speed
does the car go off the track? Does it matter where the car
starts or which direction it’s facing? Does the track shape
make a difference?

 	Can the pupils explain why this script seems to work for low
speeds but breaks for high speeds? Can they think of a way
to fix this? What could they change? Be aware that this is
quite hard, owing to limitations in Scratch, but the pupils will
still benefit from exploring this, and thinking of ways to work
around these limitations.

 	The pupils could record a screencast explaining how the
program works and what they’ve done to improve it.

 	Show the pupils the clip about Google’s self-driving cars.
The pupils should discuss what an algorithm for driving
would be like. This is an example of where it’s better to think
of algorithms as sets of rules, e.g. if the road ahead is clear,
then accelerate up to a safe speed; if the speed is greater
than the speed limit, then stop accelerating or brake until
the speed is below the speed limit, etc. It might be easier
to do this in terms of the rules that drivers should follow.
What events do they encounter? How should they react
to them? The pupils should think about how important it
would be to debug the program driving the car, and what the
consequences of bugs in this software might be.

 	Finally, pupils should evaluate the success of their work.

Step 6: Spotting and correcting resource bugs

 Scratch racing car script
 Pupil self-assessment information

 Scratch racing car script: http://
scratch.mit.edu/projects/11932304

 Video clip 1: Creating a driving
simulator: www.bbc.co.uk/
programmes/p016j4g5

 Video clip 2: Simulating Formula 1
racing: www.bbc.co.uk/programmes/
p016612j

 Video clip 3: Google’s self-
driving cars: www.youtube.com/
watch?v=cdgQpa1pUUE

RESOURCES

SCHOOL

 	Some children could convert the
program into a driving game, perhaps
by adding another car under the
player’s control.

HOME

 	The pupils could write a blog post
about the programs they’ve studied,
the different bugs they’ve encountered,
and how they’ve fixed them. The pupils
could also observe their parents or carers
driving, and try to work out some of the
driving ‘algorithms’ they use.

WWW

POSSIBLE OUTCOME FOR THIS STEP:

http://scratch.mit.edu/projects/11932304
http://scratch.mit.edu/projects/11932304
www.bbc.co.uk/programmes/p016j4g5
www.bbc.co.uk/programmes/p016j4g5
www.bbc.co.uk/programmes/p016612j
www.bbc.co.uk/programmes/p016612j
www.youtube.com/watch?v=cdgQpa1pUUE
www.youtube.com/watch?v=cdgQpa1pUUE
scratch.mit.edu/projects/11932263/

30

ALL CHILDREN SHOULD BE ABLE TO:

 	Correct ‘off-by-one’ errors in loops

 	Improve the performance of the circle-
drawing program

 	Get the dialogue in the joke program to
work in sequence

 	Experiment with the speed variable and
other factors in the racing car simulator

MOST CHILDREN WILL BE ABLE TO:

 	Describe how the times-table program works

 	Describe how the circle-drawing program
works

 Describe how the two joke scripts work
together

 	Correct the ‘Pong’-style game so the
bounce is more realistic

 	Describe how the racing car simulator works

SOME CHILDREN WILL BE ABLE TO:

 Explain how they debugged the times-table
program using logical reasoning

 Explain the connection between the number
of steps, step size and turn in the circle-
drawing program

 Explain how they corrected the joke
program

 Describe how the ‘Pong’-style program works

 Suggest explanations for the bug in the
racing car simulator

COMPUTING PoS REFERENCE

 	Debug programs that accomplish
specific goals

 	Debug programs that accomplish
specific goals

 	Debug programs that accomplish
specific goals

 	Work with variables: use logical
reasoning to detect errors in programs

 	Work with variables

 	Use logical reasoning to explain how
some simple algorithms work

 	Use logical reasoning to explain how
some simple algorithms work

 	Debug programs that accomplish
specific goals, including simulating
physical systems

 	Work with variables

 	Work with variables

 	Use logical reasoning to explain how
some simple algorithms work

 	Use logical reasoning to correct errors
in programs

 	Use logical reasoning to explain how
some simple algorithms work

 	Debug programs that accomplish
specific goals, including simulating
physical systems: work with variables

BADGE

PROGRESSION

The following units will allow your children to develop their knowledge and skills further.
 	Unit 4.1 – We are software developers
 	Unit 5.1 – We are games developers

 4 	Assessment guidance
Use this page to assess the children’s computing knowledge and skills. You may wish to use these
statements in conjunction with the badges provided on the CD-ROM or community site and/or with your
own school policy for assessing work.

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

31

DISPLAYS AND ACTIVITIES

	 Screenshots of the scripts before and after
debugging could form a display.

	 Encourage the pupils to step through the programs
they study to get a better feel for what’s going on –
they can take turns to role-play the sprite, following
the instructions as another pupil reads them.

	 The Computer Science Unplugged resources at
http://csunplugged.org/routing-and-deadlock
and http://csunplugged.org/sorting-networks
provide great, classroom-based activities linked to
examples of more complex types of algorithms.

WEBLINKS

	 The Wikipedia article on software bugs provides
a good introduction: en.wikipedia.org/wiki/
Software_bug.

	 Michal Armoni and Moti Ben-Ari have an excellent,
free book exploring computer science concepts
through Scratch. See stwww.weizmann.ac.il/g-cs/
scratch/scratch_en.html.

	 See www.bbc.co.uk/news/technology-18301670
for some primary pupils’ experiences using text-
based programming on the Raspberry Pi.

	 Tips on debugging from StackExchange can
be found at programmers.stackexchange.com/
questions/10735/how-to-most-effectively-debug-
code.

VISITS

	 A software developer might be willing to talk to the
class about their work via video conference.

BOOKS

	 Agans, D. Debugging: The Nine Indispensable
Rules for Finding Even the Most Elusive Software
and Hardware Problems. (AMACOM, 2006)

	 Badger, M. Scratch 1.4 Beginners Guide. (Packt
Publishing, 2009)

	 Butcher, P. Debug It!: Find, Repair, and Prevent
Bugs in Your Code. (Pragmatic Bookshelf, 2009)

	 Ford, J. Scratch Programming for Teens. (Delmar,
2009)

	 Hahn, D. The Alchemy of Animation. (Disney
Editions, 2011)

	 Jonassen, D. Learning to Solve Problems: A
Handbook for Designing Problem-Solving Learning
Environments. (Routledge, 2010)

	 LEAD Project, The. Super Scratch Programming
Adventure! (No Starch Press, 2012)

	 Metzger, R. Debugging by Thinking: A
Multidisciplinary Approach. (Digital Press, 2003)

WWW

	 Debugging has some connection with proofreading
in English and ‘checking your working’ in maths,
as well as overcoming problems in design and
technology, and experimental approaches in
science. Emphasise the application of logical
reasoning across the curriculum.

	 The skills the pupils learn in this unit should help
them deal with problems they encounter when
writing their own programs in other units.

	 Pupils could help other Scratch users debug and
improve their programs. If they have accounts on
the Scratch website, they could create and publish
improved versions of other people’s programs.

	 At the time of writing, the Simple English Wikipedia
entry on debugging, at http://simple.wikipedia.
org/wiki/Software_bug, is very limited. The pupils
could expand on the material there.

	 Open source projects (such as Moodle and
Wordpress) welcome detailed bug reports from
their users.

 6 	Taking it further
When you’ve finished, you might want to extend the project in the following ways.

 5 	 Classroom ideas
Practical suggestions to bring this unit alive!

http://csunplugged.org/routing-and-deadlock
http://csunplugged.org/sorting-networks
en.wikipedia.org/wiki/Software_bug
en.wikipedia.org/wiki/Software_bug
stwww.weizmann.ac.il/g-cs/scratch/scratch_en.html
stwww.weizmann.ac.il/g-cs/scratch/scratch_en.html
www.bbc.co.uk/news/technology-18301670
programmers.stackexchange.com/questions/10735/how-to-most-effectively-debug-code
programmers.stackexchange.com/questions/10735/how-to-most-effectively-debug-code
programmers.stackexchange.com/questions/10735/how-to-most-effectively-debug-code
http://simple.wikipedia.org/wiki/Software_bug
http://simple.wikipedia.org/wiki/Software_bug

